Screws and their respective instrumentation are color coded by screw diameter. See page 4 for size and color reference chart.

Wire/Drill Guide Assembly

See technique on page 3 for 1.7mm screws

- Snap Modular Handle into Drill Cannula.
- Slide Wire Guide into Drill Cannula until fully seated.

K-wire Insertion

- Drive the appropriate size K-wire through the guide to desired depth.
- Measure K-wire depth through the guide window. (See technique on page 3 for 3.5mm screws)
- If desired, advance K-wire further to help prevent disengagement when drilling over K-wire.

Wire Guide Removal

- Withdraw the Wire Guide from the Drill Cannula.
- Select the corresponding drill size for the intended screw diameter.

Site Preparation

- Drill to the desired depth over the K-wire.
- The depth of the hole can be checked through the guide window.
- Remove the drill bit and Drill Cannula.
- Countersink hole as needed to recess the screw head within the cortical bone.
Screw Insertion

- Select the appropriate screw length.
- Drive screw to desired position and remove K-wire.

TECHNIQUE

1.7mm Screws:

- Snap Modular Handle Into the Wire Guide.
- Drive K-wire through the guide to desired depth.
- Measure K-wire depth through the guide window.
- Remove Wire Guide from K-wire.
- Insert screw (as illustrated in step 5).

Note: This size screw does not require a drill and does not use a drill cannula.

3.5mm Screws:

Upper Mark:
For lengths 35, 40 and 45mm. The screw size is determined by adding **20mm** to upper mark measurement.

Lower Mark:
For lengths 34mm or less.
Cannulated Screws

<table>
<thead>
<tr>
<th>Screw</th>
<th>Length</th>
<th>Thread</th>
<th>Head</th>
<th>Wire Guide</th>
<th>Drill Cannula</th>
<th>K-wire</th>
<th>Drill Bit</th>
<th>Countersink</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7</td>
<td>L17xx</td>
<td>08–14mm²</td>
<td>1.7mm</td>
<td>2.4mm</td>
<td>WGUIDE-1.7</td>
<td>n/a</td>
<td>WIRE-0.7/080</td>
<td>Hsink-1.7</td>
</tr>
<tr>
<td>2.3</td>
<td>L23xx</td>
<td>10–20mm² 20–26mm² 26–28mm²</td>
<td>2.3mm</td>
<td>3.0mm</td>
<td>WGUIDE-2.3</td>
<td>CANNULA-2.3</td>
<td>WIRE-0.8/120</td>
<td>DRILL-1.6/095C</td>
</tr>
<tr>
<td>3.0</td>
<td>L30xx</td>
<td>10–20mm² 20–26mm² 26–36mm²</td>
<td>3.0mm</td>
<td>4.0mm</td>
<td>WGUIDE-3.0</td>
<td>CANNULA-3.0</td>
<td>WIRE-1.1/120</td>
<td>DRILL-2.1/110C</td>
</tr>
<tr>
<td>3.5</td>
<td>L35xx</td>
<td>20–32mm² 35–45mm²</td>
<td>3.5mm</td>
<td>4.5mm</td>
<td>WGUIDE-3.5</td>
<td>CANNULA-3.5</td>
<td>WIRE-1.1/120</td>
<td>DRILL-2.4/120C</td>
</tr>
</tbody>
</table>

mm² = 1mm increments
mm² = 2mm increments
mm² = 5mm increments

All implants made from surgical grade titanium

The technique presented is one suggested surgical technique. The decision to use a specific implant and the surgical technique must be based on sound medical judgment by the surgeon that takes into consideration factors such as the circumstances and configuration of the injury.